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Chapter 20:  Multilevel linear models 

Oliver Twisted 

Please, Sir, can I have some more … ICC? 

The following article appears in:  

 

Field, A. P. (2005). Intraclass correlation. In B. Everitt & D. C. Howell (Eds.), 

Encyclopedia of statistics in behavioral science  (Vol. 2, pp. 948–954). Hoboken, 

NJ: Wiley. 

 

It appears in adapted form below.  

 

Commonly used correlations such as the Pearson product moment correlation measure the 

bivariate relation between variables of different measurement classes. These are known as 

interclass correlations. By ‘different measurement classes’ we really just mean variables 

measuring different things. For example, we might look at the relation between attractiveness 

and career success. Clearly one of these variables represents a class of measures of how good 

looking a person is, whereas the other represents the class of measurements of something 

quite different: how much someone achieves in their career. However, there are often cases in 

which it is interesting to look at relations between variables within classes of measurement. In 

its simplest form, we might compare only two variables. For example, we might be interested 

in whether anxiety runs in families, and we could look at this by measuring anxiety within pairs 

of twins (Eley & Stevenson, 1999). In this case the objects being measured are twins, and both 

twins are measured on some index of anxiety. As such, there is a pair of variables both 

measuring anxiety, therefore, from the same class. In such cases, an intraclass correlation (ICC) 

is used and is commonly extended beyond just two variables to look at the consistency 

between judges. For example, in gymnastics, ice-skating, diving and other Olympic sports, 

contestants’ performance is often assessed by a panel of judges. There might be 10 judges, all 

of whom rate performance out of 10; therefore, the resulting measures are from the same 

class (they measure the same thing). The objects being rated are the competitors. This again is 

a perfect scenario of an intraclass correlation. 
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Models of intraclass correlations 

There are a variety of different intraclass correlations (McGraw & Wong, 1996; Shrout & Fleiss, 

1979), and the first step in calculating one is to determine a model for your sample data. All of 

the various forms of the intraclass correlation are based on estimates of mean variability from 

a one-way repeated-measures analysis of variance.  

All situations in which an intraclass correlation is desirable will involve multiple measures 

on different entities (be they twins, Olympic competitors, pictures, sea slugs, etc.). The objects 

measured constitute a random factor in the design (they are assumed to be random exemplars 

of the population of objects). The measures taken can be included as factors in the design if 

they have a meaningful order, or can be excluded if they are unordered, as we shall now see. 

One-way random effects model 

In the simplest case we might have only two measures (think back to our twin study on 

anxiety). When the order of these variables is irrelevant (for example, with our twins it is 

arbitrary whether we treat the data from the first twin as being anxiety measure 1 or anxiety 

measure 2). In this case, the only systematic source of variation is the random variable 

representing the different objects. As such, we can use a one-way ANOVA of the form: 

 

in which ri is the effect of object i (known as the row effects), j is the measure being 

considered, and eij is an error term (the residual effects). The row and residual effects are 

random, independent and normally distributed. Because the effect of the measure is ignored, 

the resulting intraclass correlation is based on the overall effect of the objects being measured 

(the mean between-object variability, MSRows) and the mean within-object variability (MSW). 

Both of these will be formally defined later. 

Two-way random effects model 

When the order of measures is important then the effect of the measures becomes important. 

The most common case of this is when measures come from different judges or raters. 

Hodgins and Makarchuk (2003), for example, show two such uses; in their study they took 

multiple measures of the same class of behaviour (gambling) but also took measures from 

different sources. They measured gambling both in terms of days spent gambling and money 

spent gambling. Clearly these measures generate different data, so it is important to which 

measure a datum belongs (it is not arbitrary to which measure a datum is assigned). This is one 

scenario in which a two-way model is used. However, they also took measures of gambling 

both from the gambler and a collateral (e.g., spouse). Again, it is important that we attribute 

data to the correct source. So, this is a second illustration of where a two-way model is useful. 

In such situations the intraclass correlation can be used to check the consistency or agreement 

between measures or raters. In this situation a two-way model can be used as follows: 

ijiij erx  
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in which cj is the effect of the measure (i.e., the effect of different raters, or different 

measures), and rcij is the interaction between the measures taken and the objects being 

measured. The effect of the measure (cj) can be treated as either a fixed effect or a random 

effect. How it is treated doesn’t affect the calculation of the intraclass correlation, but it does 

affect the interpretation (as we shall see). It is also possible to exclude the interaction term 

and use the model: 

 

We shall now turn our attention to calculating the sources of variance needed to calculate 

the intraclass correlation. 

Sources of variance: an example 

In the chapter in the book on repeated-measures ANOVA, there is an example relating to 

student concerns about the consistency of marking between lecturers. It is common that 

lecturers obtain reputations for being ‘hard’ or ‘light’ markers, which can lead students to 

believe that their marks are not based solely on the intrinsic merit of the work, but can be 

influenced by who marked the work. To test this we could calculate an intraclass correlation. 

First, we could submit the same eight essays to four different lecturers and record the mark 

they gave each essay. Table 1 shows the data, and you should note that it looks the same as a 

one-way repeated-measures ANOVA in which the four lecturers represent four levels of an 

‘independent variable’ and the outcome or dependent variable is the mark given (in fact I use 

these data as an example of a one-way repeated-measures ANOVA). 

Table 1 

Essay Dr Field Dr Smith Dr 
Scrote 

Dr Death Mean S2 S2(k − 1) 

1 62 58 63 64 61.75 6.92 20.75 

2 63 60 68 65 64.00 11.33 34.00 

3 65 61 72 65 65.75 20.92 62.75 

4 68 64 58 61 62.75 18.25 54.75 

5 69 65 54 59 61.75 43.58 130.75 

6 71 67 65 50 63.25 84.25 252.75 

7 78 66 67 50 65.25 132.92 398.75 

8 75 73 75 45 67.00 216.00 648.00 

Mean: 68.88 64.25 65.25 57.38 63.94 Total: 1602.50 

 

There are three different sources of variance that are needed to calculate an intraclass 

correlation which we shall now calculate. These sources of variance are the same as those 

ijijjiij erccrx  

ijjiij ecrx  
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calculated in one-way repeated-measures ANOVA. (If you don’t believe me, consult Smart 

Alex’s answers to Chapter 13 to see an identical set of calculations!) 

The between-object variance (MSRows) 

The first source of variance is the variance between the objects being rated (in this case the 

between-essay variance). Essays will naturally vary in their quality for all sorts of reasons (the 

natural ability of the author, the time spent writing the essay, etc.). This variance is calculated 

by looking at the average mark for each essay and seeing how much it deviates from the 

average mark for all essays. These deviations are squared because some will be positive and 

others negative and so would cancel out when summed. The squared errors for each essay are 

weighted by the number of values that contribute to the mean (in this case the number of 

different markers, k). So, in general terms we write this as: 

  
2

Rows Row all rows

1

SS
n

i i

i

k X X


   

Or, for our example, we could write it as: 

 
2

Essays Essay all essays

1

SS
n

i i

i

k X X


   

This would give us: 

       

       

2 2 2 2

Rows

2 2 2 2

SS 4 61.75 63.94 4 64.00 63.94 4 65.75 63.94 4 62.75 63.94

4 61.75 63.94 4 63.25 63.94 4 65.25 63.94 4 67.00 63.94

19.18 0.014 13.10 5.66 19.18 1.90 6.86 37.45

103.34

       

       

       



This sum of squares is based on the total variability and so its size depends on how many 

objects (essays in this case) have been rated. Therefore, we convert this total to an average 

known as the mean squared error (MS) by dividing by the number of essays (or in general 

terms the number of rows) minus 1. This value is known as the degrees of freedom. 

Rows
Rows

Rows

SS 103.34 103.34
MS 14.76

1 7df n
   


 

The mean squared error for the rows in the table is our estimate of the natural variability 

between the objects being rated. 

The within-judge variability (MSW) 

The second variability in which we’re interested is the variability within measures/judges. To 

calculate this we look at the deviation of each judge from the average of all judges on a 

particular essay. We use an equation with the same structure as before, but for each essay 

separately: 
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 
2

Essay Column all columns

1

SS
p

k

k

X X


   

For essay 1, for example, this would be: 

       
2 2 2 2

Essay1SS 62 61.75 58 61.75 63 61.75 64 61.75

20.75

       


 

The degrees of freedom for this calculation are again one less than the number of scores used 

in the calculation. In other words it is the number of judges, k, minus 1. 

We have to calculate this for each of the essays in turn and then add these values up to get 

the total variability within judges. An alternative way to do this is to use the variance within 

each essay. The equation mentioned above is equivalent to the variance for each essay 

multiplied by the number of values on which that variance is based (in this case the number of 

judges, k) minus 1. As such we get: 

      2 2 2

W Essay 1 1 Essay 2 2 Essay SS 1 1 ... 1n ns k s k s k        

Table 1 shows the values for each essay in the last column. When we sum these values we get 

1602.50. As before, this value is a total and so depends on the number essays (and the number 

of judges). Therefore, we convert it to an average, by dividing by the degrees of freedom. For 

each essay we calculated a sum of squares that we saw was based on k – 1 degrees of 

freedom. Therefore, the degrees of freedom for the total within-judge variability are the sum 

of the degrees of freedom for each essay: 

  W 1df n k   

in which n is the number of essays and k is the number of judges. In this case it will be 8(4–1) = 

24. 

The resulting mean squared error is, therefore: 

 
W

W

W

SS 1602.50 1602.50
MS 66.77

1 24df n k
   


 

The between-judge variability (MSColumns) 

The within-judge or within-measure variability is made up of two components. The first is the 

variability created by differences between judges. The second is unexplained variability (error 

for want of a better word). The variability between judges is again calculated using a variant of 

the same equation that we’ve used all along, only this time we’re interested in the deviation of 

each judge’s mean from the mean of all judges: 
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 
2

Columns Column all columns

1

SS
p

i i

k

n X X


   

or 

 
2

Judges Judge all judges

1

SS
p

i i

k

n X X


   

in which n is the number of things that each judge rated. For these data we’d get: 

 

The degrees of freedom for this effect are the number of judges, k, minus 1. As before, the 

sum of squares is converted to a mean squared error by dividing by the degrees of freedom: 

Columns
Columns

Columns

SS 554 554
MS 184.67

1 3df k
   


 

 The error variability (MSE) 

The final variability is the variability that can’t be explained by known factors such as variability 

between essays or judges/measures. This can be easily calculated using subtraction because 

we know that the within-judges variability is made up of the between-judges variability and 

this error: 

 
W Columns E

E W Columns

SS SS SS

SS SS SS

 

 
 

The same is true of the degrees of freedom: 

W Columns E

E W Columns

df df df

df df df

 

 
 

So, for these data we get: 

E W ColumnsSS SS SS 1602.50 554 1048.50      

and 

E W Columns 24 3 21df df df      

We get the average error variance in the usual way: 

E
E

E

SS 1048.50
MS 49.93

21df
    

554

)94.637.385(8)94.6325.65(8)94.6325.64(8)94.638.886(8SS 2222

Columns




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Calculating intraclass correlations 

Having computed the necessary variance components, we shall now look at how the intraclass 

correlation is calculated. Before we do so, however, there are two important decisions to be 

made. 

Single measures or average measures 

So far we have talked about situations in which the measures we’ve used produce single 

values. However, it is possible that we might have measures that produce an average score. 

For example, we might get judges to rate paintings in a competition based on style, content, 

originality, and technical skill. For each judge, their ratings are averaged. The end result is still 

ratings from a set of judges, but these ratings are an average of many ratings. Intraclass 

correlations can be computed for such data, but the computation is somewhat different. 

Consistency or agreement? 

The next decision involves whether you want a measure of overall consistency between 

measures/judges. The best way to explain this distinction is to return to our lecturers marking 

essays. It is possible that particular lecturers are harsh in their ratings (or lenient). A 

consistency definition views these differences as an irrelevant source of variance. As such the 

between-judge variability described above (MSColumns) is ignored in the calculation (see Table 

2). In ignoring this source of variance we are getting a measure of whether judges agree about 

the relative merits of the essays without worrying about whether the judges anchor their 

marks around the same point. So, if all the judges agree that essay 1 is the best, essay 5 is the 

worst (or their rank order of essays is roughly the same) then agreement will be high: it 

doesn’t matter that Dr Field’s marks are all 10% higher than Dr Death’s. This is a consistency 

definition of agreement. 

The alternative is to treat relative differences between judges as an important source of 

disagreement. That is, the between-judge variability described above (MSColumns) is treated as 

an important source of variation and is included in the calculation (see Table 2). In this 

scenario disagreements between the relative magnitude of judges’ ratings matter (so, the fact 

that Dr Death’s marks differ from Dr Field’s will matter even if their rank order of marks is in 

agreement). This is an absolute agreement definition. By definition the one-way model ignores 

the effect of the measures and so can have only this kind of interpretation. 

Equations for ICCs 

Table 2 shows the equations for calculating ICC based on whether a one-way or two-way 

model is assumed and whether a consistency or absolute agreement definition is preferred. 

For illustrative purposes, the ICC is calculated in each case for the example used in this entry. 

This should enable the reader to identify how to calculate the various sources of variance. In 

this table MSColumns is abbreviated to MSC and MSRows is abbreviated to MSR. 

Table 2 
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ICC for Single Scores 

Model Interpretation Equation ICC for example data 

One-
way 

Absolute 
agreement 

 
 

Two-
way 

Consistency 

 
 

Absolute 
agreement 

 
 

ICC for Average Scores 

One-
way 

Absolute 
agreement 

 
 

Two-
way 

Consistency 

 
 

Absolute 
agreement 

 

 

 

Significance testing 

The calculated intraclass correlation can be tested against a value under the null hypothesis 

using a standard F-test. McGraw and Wong (1996) describe these tests for the various 

intraclass correlations we’ve seen and Table 3 summarizes their work. In this table ICC is the 

observed intraclass correlation, while 0 is the value of the intraclass correlation under the null 

hypothesis. That is, it’s the value against which you wish to compare the observed intraclass 

correlation. So, replace this value with 0 to test the hypothesis that the observed ICC is greater 

than zero, but replace it with other values such as 0.1, 0.3 or 0.5 to test that the observed ICC 

is greater than known values of small, medium and large effect sizes, respectively. 

 

Table 3 

ICC for Single Scores 

Model Interpretation F-ratio df1 df2 

 
24.0

77.661476.14

77.6676.14






 
21.0

93.491476.14

93.4976.14






   
15.0

93.4967.184
8

4
93.491476.14

93.4976.14






52.3
76.14

77.6676.14




38.2
76.14

93.4976.14




11.1

8

93.4967.184
76.14

93.4976.14







n 

MS MS 
MS 

MS MS 

E C 
R 

E R 
 

 

 

R 

E R 
MS 

MS MS  

R 

W R 
MS 

MS MS  

    
E C E R 

E R 

MS MS 
n 

k 
MS k MS 

MS MS 

    

 

1 

  E R 

E R 
MS k MS 

MS MS 

1   

 

  W R 

W R 
MS k MS 

MS MS 

1   

 
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One-
way 

Absolute 
agreement 

   

   

 
    

         
 

           

Two-
way 

Consistency    

   
 

    

         
 

               

Absolute 
agreement 

   

         
 

in which 

  
   

       
 

    
        

       
 

               
 

       

   
 

       

          

 

ICC for Average Scores 

One-
way 

Absolute 
agreement 

    

     
 

           

Two-
way 

Consistency     

     
 

               

Absolute 
agreement 

   

         
 

in which 

  
  

       
 

    
       

       
 

     
           

 

       

   
 

       

          

 

 

Fixed versus random effects 

I mentioned earlier on that the effect of the measure/judges can be conceptualized as a fixed 

or random effect. Although it makes no difference to the calculation, it does affect the 

interpretation. Essentially, this variable should be regarded as random when the judges or 

measures represent a sample of a larger population of measures or judges that could have 

been used. Put another way, the particular judges or measures chosen are not important and 

do not change the research question you’re addressing. However, the effect of measures 

should be treated as fixed when changing one of the judges or measures would significantly 

affect the research question. For example, in the gambling study mentioned earlier it would 

make a difference if the ratings of the gambler were replaced: the fact the gamblers gave 

ratings was intrinsic to the research question being addressed (do gamblers give accurate 

information about their gambling?). However, in our example of lecturers’ marks, it shouldn’t 

make any difference if we substitute one lecturer with a different one: we can still answer the 

same research question (do lecturers, in general, give inconsistent marks?). In terms of 

interpretation, when the effect of the measures is a random factor then the results can be 
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generalized beyond the sample; however, when they are a fixed effect, any conclusions apply 

only to the sample on which the ICC is based (McGraw & Wong, 1996). 
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Please, Sir, can I have some more … centring?  

We’ll use the Cosmetic Surgery.sav data to illustrate the two types of centring discussed in the 

book chapter. Load this file into SPSS. Let’s assume that we want to centre the variable BDI. 

Grand mean centring 

Grand mean centring is really easy since we can simply use the compute 

command that we encountered in the book. First, we need to find out the mean 

score for BDI. We can do this using some simple descriptive statistics. Chose 

 to access the dialog box in Figure 1. 

Select BDI and drag it to the box labelled Variable(s), then click on  and 

select only the mean (we don’t need any other information). 

 

Figure 1 
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The resulting output tells us that the mean is 23.05: 

  

 

We use this value to centre the variable. Access the compute command by selecting 

. In the resulting dialog box enter the name BDI_Centred into the box 

labelled Target Variable and then click on  and give the variable a more descriptive 

name if you want to. Select the variable BDI and drag it across to the area labelled Numeric 

Expression, then click on  and then type the value of the mean (23.05). The completed 

dialog box is shown in Figure 2. 

 

Figure 2 

 

Click on  and a new variable will be created called BDI_Centred, which is centred around 

the mean of BDI. The mean of this new variable should be approximately 0: run some 

descriptive statistics to see that this is true. 
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You can do the same thing in a syntax window by typing: 

COMPUTE BDI_Centred = BDI−23.05. 

EXECUTE. 

Group mean centring 

Group mean centring is considerably more complicated. The first step is to create a file 

containing the means of the groups. Let’s try this again for the BDI scores. We want to centre 

this variable across the level 2 variable of Clinic. We first need to know the mean BDI in each 

group and to save that information in a form that SPSS can use later on. To do this we need to 

use the aggregate command, which is not discussed in the book. To access the main dialog box 

select . In this dialog box (Figure 3) we want to select Clinic and drag it to the 

area labelled Break Variable(s). This will mean that the variable Clinic is used to split up the 

data file (in other words, when the mean is computed it will do it for each clinic separately). 

We then need to select BDI and drag it to the area labelled Summaries of Variable(s). You’ll 

notice that once this variable is selected the default is that SPSS will create a new variable 

called BDI_mean, which is the mean of BDI (split by Clinic, obviously). We need to save this 

information in a file that we can access later on, so select 

. By default, SPSS will save the file with the name 

aggr.sav in your default directory. If you would like to save it elsewhere or under a different 

name then click on  to open a normal file system dialog box where you can name the file 

and navigate to a directory that you’d like to save it in. Click on  to create this new file. 

 

Figure 3 
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If you open the resulting data file (you don’t need to, but it will give you an idea of what it 

contains) you will see that it simply contains two columns, one with a number specifying the 

clinic from which the data came (there were 10 clinics) and the second containing the mean 

BDI score within each clinic (Figure 3, right). 

When SPSS creates the aggregated data file it orders the clinics from lowest to highest 

(regardless of what order they are in the data set). Therefore, to make our working data file 

match this aggregated file, we need to make sure that all of the data from the various clinics 

are ordered too from clinic 1 up to clinic 10. This is easily done by using the sort cases 

command. (Actually our data are already ordered in this way, but because your data might not 

always be, we’ll go through the motions anyway.) To access the sort cases command select 

. The resulting dialog box is shown in Figure 4. Select the variable that you 

want to sort the file by (in this case Clinic) and drag it to the area labelled Sort by (or click on 

). You can choose to order the file in ascending order (clinic 1 to clinic 10), which is what we 

need to do here, or descending order (clinic 10 to clinic 1). Click on  to sort the file.  

 

Figure 4 

The next step is to use these clinic means in the aggregated file to centre the BDI variable in 

our main file. To do this we need to use the match files command, which can be accessed by 

selecting . This will open a dialog box (Figure 5) 

that lists all of open data files (in my case I had none open apart from the one that I was 

working from, so this space is blank) or asks you to select an SPSS data file. Click on  and 

navigate to wherever you decided to store the file of aggregated values (in my case aggr.sav). 

Select this file, then click  to return to the dialog box. Then click on  to move on to 

the next dialog box. 
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Figure 5 

In the next dialog box (Figure 6) we need to match the two files, which just tells SPSS that 

the two files are connected. To do this click on . Then we also 

need to specifically connect the files on the Clinic variable. To do this select 

, which tells SPSS that the data set that isn’t active (i.e., the file of 

aggregated scores) should be treated as a table of values that are matched to the working data 

file on a key variable. We need to select what this key variable is. We want to match the files 

on the Clinic variable, so select this variable in the Excluded Variables list and drag it to the 

space labelled Key Variables (or click on ). Click on . 

 

Figure 6 

The data editor should now include a new variable, BDI_mean, which contains the values 

from our file aggr.sav. Basically, SPSS has matched the files for the clinic variable, so that the 

values in BDI_mean correspond to the mean value for the various clinics. So, when the clinic 

variable is 1, BDI_mean has been set as 25.19, but when clinic is 2, BDI_mean is set to 31.32. 

We can use these values in the compute command again to centre BDI. Access the compute 

command by selecting . In the resulting dialog box (Figure 7) enter 



DISCOVERING STATISTICS USING SPSS 

PROFESSOR ANDY P FIELD  15 

the name BDI_Group_Centred into the box labelled Target Variable and then click on 

 and give the variable a more descriptive name if you want to. Select the variable BDI 

and drag it across to the area labelled Numeric Expression, then click on  and then either 

type ‘BDI_mean’ or select this variable and drag it to the box labelled Target Variable. Click on 

 and a new variable will be created containing the group centred means. 

 

Figure 7 

Alternatively, you can do this all with the following syntax: 

 

AGGREGATE 

  /OUTFILE='C:\Users\Dr. Andy Field\Documents\Academic\Data\aggr.sav' 

  /BREAK=Clinic 

  /BDI_mean=MEAN(BDI). 

 

SORT CASES BY Clinic(A). 

 

MATCH FILES /FILE=* 
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  /TABLE='C:\Users\Dr. Andy Field\Documents\Academic\Data\aggr.sav' 

  /BY  Clinic. 

EXECUTE. 

 

COMPUTE BDI_Group_Centred=BDI − BDI_mean. 

EXECUTE. 

Please Sir, can I have some more … restructuring? 

To access the Restructure Data Wizard select . The steps in the 

wizard are shown in Figure 8. In the first dialog box you need to say whether 

you are converting variables to cases, or cases to variables. We have different 

levels of time in different columns (variables), and we want them to be in 

different rows (cases), so we need to select . Click 

on  to move to the next dialog box. This dialog box asks you whether you are 

creating just one new variable in your new data file from different columns in the old data file, 

or whether you want to create more than one new variable. In our case we are going to create 

one variable representing life satisfaction; therefore, select . When you 

have done this click on . The next dialog box is crucial because it’s where you set up the 

new data file. By default, SPSS creates a variable in your new data file called id which tells you 

from which person the data came (i.e., which row of the original data file). It does this by using 

the case numbers in the original data file. This default is fine, but if you want to change it (or 

the name id) then go to the section labelled Case Group Identification and change 

 to be  and then select a variable 

from your data file to act as a label in the new data file. I have chosen the variable Person from 

the original data set to identify participants in the new data file.  

In the section labelled Variables to be Transposed there is a drop-down list labelled Target 

Variable which should contain an item labelled (rather unimaginatively) trans1.There is one 

item because we specified that we wanted one new variable in the previous dialog box (if we 

had asked for more than one new variable this drop-down list would contain as many items as 

variables that we requested). We can change the name of trans1 by selecting the variables in 

the drop-down list and then editing their names. I suggest that you rename the variable 

Life_Satisfaction. We then need to tell SPSS which columns are associated with these two 

variables. Select from the list labelled Variables in the Current File the four variables that 

represent the different time points at which life satisfaction was measured 

(Satisfaction_Baseline, Satisfaction_6_Months, Satisfaction_12_Months, 

Satisfaction_18_Months). If you hold down the Ctrl key then you can select all four variables 

and either drag them across or click on . It’s important that you select the variables in the 

correct order: SPSS assumes that the first variable that it encounters is the first level of the 
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repeated measure, and the second variable is the second level and so on. Once the variables 

are transferred, you can reorder them by using  or  to move selected variables up or 

down the list. Finally, there is a space to select Fixed Variable(s). Drag variables here that do 

not vary at level 1 of your hierarchy. In this example, this means that we can select variables 

that are different in different people (they vary at level 2) but have the same value at the 

different time points (they do not vary at level 1). The only variable that we have like this is 

Gender, which did not change over the course of the data collection, but differs across people. 

When you have finished click on . 

The remaining dialog boxes are fairly straightforward. The next two deal with the indexing 

variable. SPSS creates a new variable that will tell you from which column the data originate. In 

our case with four time points this will mean that the variable is simply a sequence of numbers 

from 1 to 4. So, if the data point came from the baseline phase it will be assigned a 1, whereas 

it if came from the 18-month follow-up phase it will be given a 4. You can select to have a 

single index variable (which we need here) or not to have one, or to have several. We have 

restructured only one repeated-measures variable (Time), so we need only one index variable 

to represent levels of this variable. Therefore, select    and click on . In the next 

dialog box (Figure 9) you can opt either to have the index variable containing numbers (such as 

1, 2, 3, 4) or to use the names at the top of the columns from which the data came. The choice 

is up to you. You can also change the index variables name from Index to something useful 

such as Time (as I have done). The default options in the remaining dialog boxes are fine for 

most purposes, so you can just click on  to do the restructuring. However, if you want to, 

you can click on  to move to a dialog box that enables you to opt to keep any variables 

from your original data file that you haven’t explicitly specified in the previous dialog boxes. 

The default is to drop them, and that’s fine (any variables from the original data file that you 

want in the new data file should probably be specified earlier on in the wizard). You can also 

choose to keep or discard missing data. Again, the default option to keep missing data is 

advisable here because multilevel models can deal with missing values. Click on  to move 

on to the final dialog box. This box gives you the option to restructure the data (the default) or 

to paste the syntax into a syntax window so that you can save it as a syntax file. If you’re likely 

to do similar data restructuring then saving the syntax might be useful, but once you have got 

use to the windows it doesn’t take long to restructure new data anyway. Click on  to 

restructure the data. 
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Figure 8: The Restructure Data Wizard 1 
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Figure 9: The Restructure Data Wizard 2 


