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Chapter 13:  Factorial ANOVA 

Oliver Twisted 

Please, Sir, can I … customize my model? 

Different types of sums of squares 

In the sister book on R, I needed to explain sums of squares because, unlike 

SPSS, R does not routinely use Type III sums of squares. Actually, people who 

use R tend to turn a funny shade of pink at the mention of Type III sums of 

squares and start mumbling things about the developers of SPSS and SAS (another 

software package) being bastards. Anyway, here’s what I wrote (Field, Miles, & Field, 2012): 

“We can compute sums of squares in four different ways, which gives rise to what are 

known as Type I, II, III and IV sums of squares. To explain these, we need an example. Let’s 

imagine that we’re predicting libido from partnerLibido (the covariate), dose (the independent 

variable) and their interaction (partnerLibido  dose). 

The simplest explanation of Type I sums of squares is that they are like doing a hierarchical 

regression in which we put one predictor into the model first, and then enter the second 

predictor. This second predictor will be evaluated after the first. If we entered a third predictor 

then this would be evaluated after the first and second, and so on. In other words the order 

that we enter the predictors matters. Therefore, if we entered our variables in the order 

partnerLibido, dose and then partnerLibido  dose, then dose would be evaluated after the 

effect of partnerLibido and partnerLibido  dose would be evaluated after the effects of both 

partnerLibido and dose.  

Type III sums of squares differ from Type I in that all effects are evaluated taking into 

consideration all other effects in the model (not just the ones entered before). This process is 

comparable to doing a forced entry regression including the covariate(s) and predictor(s) in the 

same block. Therefore, in our example, the effect of dose would be evaluated after the effects 

of both partnerLibido and partnerLibido  dose, the effect of partnerLibido would be 

evaluated after the effects of both dose and partnerLibido  dose, finally, partnerLibido  

dose would be evaluated after the effects of both dose and partnerLibido. 

Type II sums of squares are somewhere in between Type I and III in that all effects are 

evaluated taking into consideration all other effects in the model except for higher-order 

effects that include the effect being evaluated. In our example, this would mean that the effect 

of dose would be evaluated after the effect of partnerLibido (note that unlike Type III sums of 

squares, the interaction term is not considered); similarly, the effect of partnerLibido would be 
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evaluated after only the effect of dose. Finally, because there is no higher-order interaction 

that includes partnerLibido  dose, this effect would be evaluated after the effects of both 

dose and partnerLibido. In other words, for the highest-order term Type II and Type III sums of 

squares are the same. Type IV sums of squares are essentially the same as Type III but are 

designed for situations in which there are missing data. 

The obvious question is which type of sums of squares should you use: 

 Type I: Unless the variables are completely independent of each other (which is 

unlikely to be the case) then Type I sums of squares cannot really evaluate the true 

main effect of each variable. For example, if we enter partnerLibido first, its sums of 

squares are computed ignoring dose; therefore any variance in libido that is shared by 

dose and partnerLibido will be attributed to partnerLibido (i.e., variance that it shares 

with dose is attributed solely to it). The sums of squares for dose will then be 

computed excluding any variance that has already been ‘given over’ to partnerLibido. 

As such the sums of squares won’t reflect the true effect of dose because variance in 

libido that dose shares with partnerLibido is not attributed to it because it has already 

been ‘assigned’ to partnerLibido. Consequently, Type I sums of squares tend not to be 

used to evaluate hypotheses about main effects and interactions because the order of 

predictors will affect the results. 

 Type II: If you’re interested in main effects then you should use Type II sums of 

squares. Unlike Type III sums of squares, Type IIs give you an accurate picture of a 

main effect because they are evaluated ignoring the effect of any interactions 

involving the main effect under consideration. Therefore, variance from a main effect 

is not ‘lost’ to any interaction terms containing that effect. If you are interested in 

main effects and do not predict an interaction between your main effects then these 

tests will be the most powerful. However, if an interaction is present, then Type II 

sums of squares cannot reasonably evaluate main effects (because variance from the 

interaction term is attributed to them). However, if there is an interaction then you 

shouldn’t really be interested in main effects anyway. One advantage of Type II sums 

of squares is that they are not affected by the type of contrast coding used to specify 

the predictor variables. 

 Type III: Type III sums of squares tend to get used as the default in many statistical 

packages. They have the advantage over Type IIs in that when an interaction is 

present, the main effects associated with that interaction are still meaningful (because 

they are computed taking the interaction into account). Perversely, this advantage is a 

disadvantage too because it’s pretty silly to entertain ‘main effects’ as meaningful in 

the presence of an interaction. Type III sums of squares encourage people to do daft 

things like get excited about main effects that are superseded by a higher-order 

interaction. Type III sums of squares are preferable to other types when sample sizes 

are unequal; however, they work only when predictors are encoded with orthogonal 

contrasts. 



DISCOVERING STATISTICS USING SPSS 

PROFESSOR ANDY P FIELD  3 

Hopefully, it should be clear that the main choice in ANOVA designs is between Type II and 

Type III sums of squares. The choice depends on your hypotheses and which effects are 

important in your particular situation. If your main hypothesis is around the highest order 

interaction then it doesn’t matter which you choose (you’ll get the same results); if you don’t 

predict an interaction and are interested in main effects then Type II will be most powerful; 

and if you have an unbalanced design then use Type III. This advice is, of course, a simplified 

version of reality; be aware that there is (often heated) debate about which sums of squares 

are appropriate to a given situation.” 

Customizing an ANOVA model 

By default SPSS conducts a full factorial analysis (i.e., it includes all of the main effects and 

interactions of all independent variables specified in the main dialog box). However, there may 

be times when you want to customize the model that you use to test for certain things. To 

access the model dialog box, click on  in the main dialog box. You will notice that, by 

default, the full factorial model is selected. Even with this selected, there is an option at the 

bottom to change the types of sums of squares that are used in the analysis. Although we have 

learnt about sums of squares and what they represent, I haven’t talked about 

different ways of calculating sums of squares. It isn’t necessary to understand 

the computation of the different forms of sums of squares, but it is important 

that you know the uses of some of the different types. By default, SPSS uses 

Type III sums of squares, which have the advantage that they are invariant to 

the cell frequencies. As such, they can be used with both balanced and unbalanced (i.e., 

different numbers of participants in different groups) designs, which is why they are the 

default option. Type IV sums of squares are like Type III except that they can be used with data 

in which there are missing values. So, if you have any missing data in your design, you should 

change the sums of squares to Type IV. 

To customize a model, click on  to activate the dialog box. The 

variables specified in the main dialog box will be listed on the left-hand side. 

You can select one, or several, variables from this list and transfer them to 

the box labelled Model as either main effects or interactions. By default, SPSS 

transfers variables as interaction terms, but there are several options that 

allow you to enter main effects, or all two-way, three-way or four-way 

interactions. These options save you the trouble of having to select lots of combinations of 

variables (because, for example, you can select three variables, transfer them as all two-way 

interactions and it will create all three combinations of variables for you). Hence, you could 

select Gender and Alcohol (you can select both of them at the same time by holding down 

Ctrl). Then, click on the drop-down menu and change it to . Having selected this, click 

on  to move the main effects of Gender and Alcohol to the box labelled Model. Next you 

could specify the interaction term. To do this, select Gender and Alcohol simultaneously (by 

holding down the Ctrl key while you click on the two variables), then select  in the 

drop-down list and click on . This action moves the interaction of Gender and Alcohol to the 

box labelled Model. The finished dialog box should look like that below. Having specified our 
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two main effects and the interaction term, click on  to return to the main dialog box and 

then click on  to run the analysis. Although model selection has important uses, it is likely 

that you’d want to run the full factorial analysis on most occasions and so wouldn’t customize 

your model. 

 

 

Please, Sir, can I have some more … contrasts? 

 Why do we need to use syntax? 

In Chapters 12, 13 and 14 of the book we use SPSS’s built-in contrast functions 

to compare various groups after conducting ANOVA. These special contrasts 

(described in Chapter 10, Table 10.6) cover many situations, but in more 

complex designs there will be times when you want to do contrasts that simply can’t 

be done using SPSS’s built-in contrasts. Unlike one-way ANOVA, there is no way in factorial 

designs to define contrast codes through the Windows dialog boxes. However, SPSS can do 

these contrasts if you define them using syntax. 

An example  

Imagine a clinical psychologist wanted to see the effects of a new antidepressant drug called 

Cheerup. He took 50 people suffering from clinical depression and randomly assigned them to 

one of five groups. The first group was a waiting list control group (i.e., people assigned to the 

waiting list who were not treated during the study), the second took a placebo tablet (i.e., they 

were told they were being given an antidepressant drug but actually the pills contained sugar 

and no active agents), the third group took a well-established SSRI antidepressant called 

Seroxat (Paxil to American readers), the fourth group was given a well-established SNRI 
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antidepressant called Effexor,1 and the final group was given the new drug, Cheerup. Levels of 

depression were measured before and after two months on the various treatments, and 

ranged from 0 = as happy as a spring lamb to 20 = pass me the noose. The data are in the file 

Depression.sav. 

This study is a two-way mixed design. There are two independent variables: treatment (no 

treatment, placebo, Seroxat, Effexor or Cheerup) and time (before or after treatment). 

Treatment is measured with different participants (and so is between-group) and time is, 

obviously, measured using the same participants (and so is repeated-measures). Hence, the 

ANOVA we want to use is a 5  2 two-way ANOVA. 

Now, we want to do some contrasts. Imagine we have the following hypotheses: 

1. Any treatment will be better than no treatment. 
2. Drug treatments will be better than the placebo. 
3. Our new drug, Cheerup, will be better than old-style antidepressants. 
4. The old-style antidepressants will not differ in their effectiveness. 

We have to code these various hypotheses as we did in Chapter 11. The first contrast 

involves comparing the no-treatment condition to all other groups. Therefore, the first step is 

to chunk these variables, and then assign a positive weight to one chunk and a negative weight 

to the other chunk. 

 

 

Having done that, we need to assign a numeric value to the groups in each chunk. As I 

mentioned in Chapter 8, the easiest way to do this is just to assign a value equal to the number 

of groups in the opposite chunk. Therefore, the value for any group in chunk 1 will be the same 

as the number of groups in chunk 2 (in this case 4). Likewise, the value for any groups in chunk 

2 will be the same as the number of groups in chunk 1 (in this case 1). So, we get the following 

codes: 

 

                                                           
1 SSRIs, selective serotonin reuptake inhibitors, work selectively to inhibit the reuptake of the 

neurotransmitter serotonin in the brain, whereas SNRIs, serotonin norepinephrine reuptake inhibitors, 

which are newer, act not only on serotonin but also on another neurotransmitter (from the same 

family), norepinephrine. 
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The second contrast requires us to compare the placebo group to all of the drug groups. 

Again, we chunk our groups accordingly, assign one chunk a negative sign and the other a 

positive, and then assign a weight on the basis of the number of groups in the opposite chunk. 

We must also remember to give the no-treatment group a weight of 0 because they’re not 

involved in the contrast. 

 

 

 

The third contrast requires us to compare the new drug (Cheerup) to the old drugs (Seroxat 

and Effexor). Again, we chunk our groups accordingly, assign one chunk a negative sign and the 

other a positive, and then assign a weight on the basis of the number of groups in the opposite 

chunk. We must also remember to give the no-treatment and placebo groups a weight of 0 

because they’re not involved in the contrast. 
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The final contrast requires us to compare the two old drugs. Again, we chunk our groups 

accordingly, assign one chunk a negative sign and the other a positive, and then assign a 

weight on the basis of the number of groups in the opposite chunk. We must also give the no-

treatment, placebo and Cheerup groups a weight of 0 because they’re not involved in the 

contrast. 

 

 

 

We can summarize these codes in the following table: 

 

 No 
Treatment 

Placebo Seroxat Effexor Cheerup 

Contrast 1 −4 1 1 1 1 

Contrast 2 0 −3 1 1 1 

Contrast 3 0 0 1 1 −2 

Contrast 4 0 0 1 −1 0 
 

These are the codes that we need to enter into SPSS to do the contrasts that we’d like to do. 
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Entering the contrasts using syntax 

To enter these contrasts using syntax we have to first open a syntax window (see Chapter 2 of 

the book). Having done that we have to type the following commands: 

MANOVA 

before after BY treat(0 4) 

This initializes the ANOVA command in SPSS. The second line specifies the variables in the data 

editor. The first two words, ‘before’ and ‘after’, are the repeated-measures variables (and 

these words are the words used in the data editor). Anything after BY is a between-group 

measure and so needs to be followed by brackets within which the minimum and maximum 

values of the coding variable are specified. I called the between-group variable treat, and I 

coded the groups as 0 = no treatment, 1 = placebo, 2 = Seroxat, 3 = Effexor, 4 = Cheerup. 

Therefore, the minimum and maximum codes were 0 and 4. So these two lines tell SPSS to 

start the ANOVA procedure, that there are two repeated-measures variables called before and 

after, and that there is a between-group variable called treat that has a minimum code of 0 

and a maximum of 4. 

  /WSFACTORS time (2)  

The /WSFACTORS command allows us to specify any repeated-measures variables. SPSS 

already knows that there are two variables called before and after, but it doesn’t know how to 

treat these variables. This command tells SPSS to create a repeated-measures variable called 

time that has two levels (the number in brackets). SPSS then looks to the variables specified 

before and assigns the first one (in this case before) to be the first level of time, and then 

assigns the second one (in this case after) to be the second level of time.   

  /CONTRAST (time)=special(1 1, 1 −1) 

This is used to specify the contrasts for the first variable. The /CONTRAST is used to specify 

any contrast. It’s always followed by the name of the variable that you want to do a contrast 

on in brackets. We have two variables (time and treat) and in this first contrast we want to 

specify a contrast for time. Time only has two levels, and so all we want to do is to tell SPSS to 

compare these two levels (which actually it will do by default, but I want you to get some 

practice in!). What we write after the equals sign defines the contrast, so we could write the 

name of one of the standard contrasts such as Helmert, but because we want to specify our 

own contrast we use the word special. Special should always be followed by brackets, and 

inside those brackets are your contrast codes. Codes for different contrasts are separated 

using a comma, and within a contrast, codes for different groups are separated using a space. 

The first contrast should always be one that defines a baseline for all other contrasts and that 

is one that codes all groups with a 1. Therefore, because we have two levels of time, we just 

write 1 1, which tells SPSS that the first contrast should be one in which both before and after 

are given a code of 1. The comma tells SPSS that a new contrast follows and this second 

contrast has been defined as 1 –1, which tells SPSS that in this second contrast we want to give 
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before a code of 1, and after a code of −1. Note that the codes you write in the brackets are 

assigned to variables in the order that those variables are entered into the SPSS syntax, so 

because we originally wrote before after BY treat(0 4), SPSS assigns the 1 to before and −1 to 

after; if we’d originally written after before BY treat(0 4) then SPSS would have assigned them 

the opposite way round: the 1 to after and −1 to before. 

 /CONTRAST (treat)=special(1 1 1 1 1, −4 1 1 1 1, 0 −3 1 1 1, 0 0 1 1 −2, 0 0 1 −1 0) 

This is used to specify the contrasts for the second variable. This time the /CONTRAST 

command is followed by the name of the second variable (treat). Treat has five levels, and 

we’ve already worked out four different contrasts that we want to do. Again we use the word 

special after the equals sign and specify our coding values within the brackets. As before, 

codes for different contrasts are separated using a comma and, within a contrast, codes for 

different groups are separated using a space. Also, as before, the first contrast should always 

be one that defines a baseline for all other contrasts, and that is one that codes all groups with 

a 1. Therefore, because we have five levels of treat, we just write 1 1 1 1 1, which tells SPSS 

that the first contrast should be one in which all five groups are given a code of 1. The comma 

tells SPSS that a new contrast follows and this second contrast has been defined as −4 1 1 1 1, 

which tells SPSS that in this second contrast we want to give the first group a code of −4 and all 

subsequent groups codes of 1. How does SPSS decide what the first group is? It uses the 

coding variable in the data editor and orders the groups in the same order as the coding 

variable. Therefore, because I coded the groups as 0 = no treatment, 1 = placebo, 2 = Seroxat, 

3 = Effexor, 4 = Cheerup, this first contrast gives the no-treatment group a code of −4, and all 

subsequent groups codes of 1. The comma again tells SPSS that, having done this, there is 

another contrast to follow and this contrast has been defined as 0 −3 1 1 1, which tells SPSS 

that in this contrast we want to give the first group (no treatment) a code of 0, the second 

group (placebo) a code of −3 and all subsequent groups codes of 1. The comma again tells SPSS 

that, having done this, there is another contrast to follow and this contrast has been defined 

as 0 0 1 1 −2, which tells SPSS that in this contrast we want to give the first two groups (no 

treatment and placebo) a code of 0, the third and fourth groups (Seroxat and Effexor) a code 

of 1 and the final group (Cheerup) a code of −2. The comma again tells SPSS that there is yet 

another contrast to follow and this contrast has been defined as 0 0 1 −1 0, which tells SPSS 

that in this contrast we want to give the first, second and last (no treatment, placebo and 

Cheerup) groups a code of 0, the third group (Seroxat) a code of 1 and the fourth group 

(Effexor) a code of −1. As such, this one line of text has defined the four contrasts that we 

want to do. 

  /CINTERVAL JOINT(.95) MULTIVARIATE(BONFER) 

This line defines the type of confidence intervals that you want to do for your contrasts. I 

recommend the Bonferroni option, but if you delve into the SPSS syntax guide you can find 

others. 

  /METHOD UNIQUE 
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  /ERROR WITHIN+RESIDUAL 

  /PRINT  TRANSFORM  HOMOGENEITY(BARTLETT COCHRAN BOXM) 

    SIGNIF( UNIV MULT AVERF HF GG ) 

    PARAM( ESTIM EFSIZE). 

These lines of syntax specify various things (that may or may not be useful) such as a 

transformation matrix (TRANSFORM), which isn’t at all necessary here but is useful if you’ve 

used SPSS’s built-in contrasts, homogeneity tests (HOMOGENEITY(BARTLETT COCHRAN 

BOXM)), the main ANOVA and Huynh–Feldt and Greenhouse–Geisser corrections which we 

don’t actually need in this example (SIGNIF( UNIV MULT AVERF HF GG )), and parameter 

estimates and effect size estimates for the contrasts we’ve specified (PARAM( ESTIM EFSIZE)).  

So, the whole syntax will look like this: 

MANOVA 

  before after BY treat(0 4)  

  /WSFACTORS time (2)  

  /CONTRAST (time)=special(1 1, 1 −1) 

 /CONTRAST (treat)=special (1 1 1 1 1, −4 1 1 1 1, 0 −3 1 1 1, 0 0 1 1 −2, 0 0 1 −1 0) 

  /CINTERVAL JOINT(.95) MULTIVARIATE(BONFER) 

  /METHOD UNIQUE 

  /ERROR WITHIN+RESIDUAL 

  /PRINT  TRANSFORM  HOMOGENEITY(BARTLETT COCHRAN BOXM) 

    SIGNIF( UNIV MULT AVERF HF GG ) 

    PARAM( ESTIM EFSIZE). 

It’s very important to remember the full stop at the end! This syntax is in the file 

DepressionSyntax.sps as well, in case your typing goes wrong! 

Output from the contrasts 

The output you get is in the form of text (no nice pretty tables), and to interpret it you have to 

remember the contrasts you specified! I’ll run you through the main highlights of this example. 

The first bit of the output will show the homogeneity tests (which should all be non-significant, 

but beware of Box’s test because it tends to be inaccurate). The first important part is the 

main effect of the variable treat. First there’s an ANOVA summary table like those you’ve come 

across before (if you’ve read Chapters 8–11). This tells us that there’s no significant main effect 
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of the type of treatment, F(4, 45) = 2.01, p = .11. This means that if you ignore the time at 

which depression was measured then the levels of depression were about the same across the 

treatment groups. Of course, levels of depression should be the same before treatment, and 

so this isn’t a surprising result (because it averages across scores before and after treatment. 

The graph shows that, in fact, levels of depression are relatively similar across groups. 

 

* * * * * * A n a l y s i s   o f   V a r i a n c e -- design   1 * * * * * * 

 

Tests of Between-Subjects Effects. 

 

 Tests of Significance for T1 using UNIQUE sums of squares 

 Source of Variation          SS      DF        MS         F  Sig of F 

 

 WITHIN+RESIDUAL          359.95      45      8.00 

 TREAT                     64.30       4     16.08      2.01      .109 

 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 Estimates for T1 

 --- Joint univariate .9500 BONFERRONI confidence intervals 

 

 TREAT 

 

  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 

 

        2   −7.7781746    3.99972   −1.94468     .05808  −18.18578    2.62944 

        3   3.53553391    3.09817    1.14117     .25984   −4.52617   11.59723 

        4   3.74766594    2.19074    1.71069     .09403   −1.95282    9.44815 

        5   −.21213203    1.26482    −.16772     .86756   −3.50331    3.07904 

 

  Parameter    ETA Sq. 

 

        2       .07752 

        3       .02813 

        4       .06106 

        5       .00062 

 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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This main effect is followed by some contrasts, but we don’t need to look at these because 

the main effect was non-significant. However, just to tell you what they are, parameter 2 is our 

first contrast (no treatment vs. the rest), and, as you can see, this is almost significant (p is just 

above 0.05); parameter 3 is our second contrast (placebo vs. the rest), and this is non-

significant; parameter 4 is our third contrast (Cheerup vs. Effexor and Seroxat), and again this 

is almost significant; parameter 5 is our last contrast (Seroxat vs. Effexor), and this is very non-

significant. However, these contrasts all ignore the effect of time and so aren’t really what 

we’re interested in. 

 

 

The next part that we’re interested in is the within-subject effects, and this involves the 

main effect of time and the interaction of time and treatment. First there’s an ANOVA 

summary table as before. This tells us that there’s a significant main effect of the time, F(1, 45) 

= 43.02, p < .001. This tells us that if you ignore the type of treatment, there was a significant 

difference between depression levels before and after treatment. A quick look at the means 

reveals that depression levels were significantly lower after treatment. Below the ANOVA table 

is a parameter estimate for the effect of time. As there are only two levels of time, this 

represents the difference in depression levels before and after treatment. No other contrasts 

are possible. 

* * * * * * A n a l y s i s   o f   V a r i a n c e -- design   1 * * * * * * 

 

Tests involving 'TIME' Within-Subject Effect. 

 

 Tests of Significance for T2 using UNIQUE sums of squares 

 Source of Variation          SS      DF        MS         F  Sig of F 

 

 WITHIN+RESIDUAL          320.35      45      7.12 

 TIME                     306.25       1    306.25     43.02      .000 

 TREAT BY TIME            125.90       4     31.47      4.42      .004 

 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 Estimates for T2 
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 --- Joint univariate .9500 BONFERRONI confidence intervals 

 

 TIME 

 

  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 

 

        1   2.47487373     .37733    6.55891     .00000    1.71489    3.23485 

 

  Parameter    ETA Sq. 

 

        1       .48875 

 

 TREAT BY TIME 

 

  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 

 

        2   11.3137085    3.77330    2.99836     .00441    1.49527   21.13214 

        3   −.56568542    2.92278    −.19354     .84740   −8.17101    7.03964 

        4   −5.8689863    2.06672   −2.83976     .00675  −11.24676    −.49121 

        5   .919238816    1.19322     .77038     .44510   −2.18562    4.02410 

 

  Parameter    ETA Sq. 

 

        2       .16651 

        3       .00083 

        4       .15197 

        5       .01302 

 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

 

The interaction term is also significant, F(4, 45) = 4.42, p = .004. This indicates that the 

change in depression over time is different in some treatments to others. We can make sense 

of this through an interaction graph, but we can also look at our contrasts. The key contrasts 

for this whole analysis are the parameter estimates for the interaction term (the bit in the 

output underneath the heading TREAT BY TIME) because they take into account the effect of 

time and treatment:  
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 Parameter 2 is our first contrast (no-treatment vs. the rest), and, as you can see, this is 

significant (p is below 0.05). This tells us that the change in depression levels in the no-

treatment group was significantly different from the average change in all other 

groups, t = 2.30, p = .004. As you can see in the graph, there is no change in depression 

in the no-treatment group, but in all other groups there is a fall in depression. 

Therefore, this contrast reflects the fact that there is no change in the no-treatment 

group, but there is a decrease in depression levels in all other groups. 

 Parameter 3 is our second contrast (placebo vs. Seroxat, Effexor and Cheerup), and 

this is very non-significant, t = –.19, p = .847. This shows that the decrease in 

depression levels seen in the placebo group is comparable to the average decrease in 

depression levels seen in the Seroxat, Effexor and Cheerup conditions. In other words, 

the combined effect of the drugs on depression is no better than a placebo. 

 Parameter 4 is our third contrast (Cheerup vs. Effexor and Seroxat), and this is highly 

significant, t = –2.84, p = .007. This shows that the decrease in depression levels seen 

in the Cheerup group is significantly bigger than the decrease seen in the Effexor and 

Seroxat groups combined. Put another way, Cheerup has a significantly bigger effect 

than other established antidepressants. 

 Parameter 5 is our last contrast (Seroxat vs. Effexor), and this is very non-significant, t 

= .77, p = .445. This tells us that the decrease in depression levels seen in the Seroxat 

group is comparable to the decrease in depression levels seen in the Effexor group. 

Put another way, Effexor and Seroxat seem to have similar effects on depression. 

I hope to have shown in this example how to specify contrasts using syntax and how 

looking at these contrasts (especially for an interaction term) can be a very useful way to break 

down an interaction effect. 

Please, Sir, can I have some more … simple effects?  

Calculating simple effects 

A simple main effect (usually called a simple effect) is just the effect of one 

variable at levels of another variable. In Chapter 12 we had an example in which 

we’d measured the attractiveness of dates after no alcohol, 2 pints and 4 pints 

in both men and women. Therefore, we have two independent variables: alcohol 

(none, 2 pints, 4 pints) and gender (male and female). One simple effects analysis we could do 

would be to look at the effect of gender (i.e., compare male and female scores) at the three 

levels of alcohol. Let’s look how we’d do this. We’re partitioning the model sum of squares, 

and we saw in Chapter 10 that we calculate model sums of squares using this equation: 

                    
 

 

   

 

For simple effects, we calculate the model sum of squares for the effect of gender at each 

level of alcohol. So, we’d begin with when there was no alcohol, and calculate the model sum 
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of squares. Thus the grand mean becomes the mean for when there was no alcohol, and the 

group means are the means for men (when there was no alcohol) and women (when there 

was no alcohol). So, we group the data by the amount of alcohol drunk. Within each of these 

three groups, we calculate the overall mean and also the mean of the male and female scores 

separately. These mean scores are all we really need. Pictorially, you can think of the data as 

displayed pictorially below. 

 

No Alcohol  2 Pints  4 Pints 

Female Male  Female Male  Female Male 

65 50  70 45  55 30 

70 55  65 60  65 30 

60 80  60 85  70 30 

60 65  70 65  55 55 

60 70  65 70  55 35 

55 75  60 70  60 20 

60 75  60 80  50 45 

55 65  50 60  50 40 

60.625 66.875  62.50 66.875  57.500 35.625 

Mean None = 

63.75 
 

Mean 2 Pints = 

64.6875 
 

Mean 4 Pints = 

46.5625 

We can then apply the same equation for the model sum of squares that we used for the 

overall model sum of squares, but we use the grand mean of the no-alcohol data (63.75) and 

the means of males (66.875) and females (60.625) within this group: 

 

                                      
 
 

                                                                                                              

               

The degrees of freedom for this effect are calculated the same way as for any model sum of 

squares; that is, they are one less than the number of conditions being compared (k – 1), 

which in this case, wheew we’re comparing only two conditions, will be 1. 
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The next step is to do the same but for the 2-pints data. Now we use the grand mean of the 

2-pints data (64.6875) and the means of males (66.875) and females (62.50) within this group. 

The equation, however, stays the same: 

                                   
 

 

                                                                                                                    

       

The degrees of freedom are the same as in the previous simple effect, namely k – 1, which is 1 

for these data.  

The next step is to do the same but for the 4-pints data. Now we use the grand mean of the 

4-pints data (46.5625) and the means of females (57.500) and males (35.625) within this 

group. The equation, however, stays the same: 

                                   
 

 

                                                                                                                    

              

Again, the degrees of freedom are 1 (because we’ve compared two groups).  

As with any ANOVA, we need to convert these sums of squares to mean squares by dividing 

by the degrees of freedom. However, because all of these sums of squares have 1 degree of 

freedom, the mean squares will be the same as the sum of squares because we’re dividing by 

1. So, the final stage is to calculate an F-ratio for each simple effect. As ever, the F-ratio is just 

the mean squares for the model divided by the residual mean squares. So, you might well ask, 

what do we use for the residual mean squares? When conducting simple effects we use the 

residual mean squares for the original ANOVA (the residual mean squares for the entire 

model). In doing so we are merely partitioning the model sums of squares and so keep control 

of the Type I error rate. For these data, the residual sum of squares was 83.036 (see Section 

13.2.7). Therefore, we get: 

                    
                    

   
 

      

      
      

                 
                 

   
 

     

      
      

                 
                  

   
 

       

      
       



DISCOVERING STATISTICS USING SPSS 

PROFESSOR ANDY P FIELD  17 

We can evaluate these F-values in the usual way (they will have 1 and 42 degrees of freedom 

for these data). However, for the 2-pints data we can be sure there is not a significant effect of 

gender because the F-ratio is less than 1. 


